
VVoolluummee--77  ••  NNuummbbeerr--11  JJaann  --JJuunnee  22001155  pppp..  3300--3366                        IImmppaacctt  FFaaccttoorr  22..55                    aavvaaiillaabbllee  oonnlliinnee  aatt  wwwwww..ccssjjoouurrnnaallssss..ccoomm  
 

Page | 30 
 

A Kinematics Update State Hypotheses Information 

Surveillance Model for a Moving Train  
 

Tanuja.P.Patgar
1
,
,
 Dr. Shankaraiah

2 

1
Research Scholar, SJCE research centre, Mysore, India 

2
Professor, Dept. of ECE, SJCE, Mysore, India 

tanuja_patgar@yahoo.com 

 

 
Abstract: A train is more difficult to track and control accurately in low satellite visible environment. This is due to greater 

sensitivity to control inputs, multipath loss and line of sight of Global Positioning System. The paper presents the performance 

analysis of Differential Global Positioning System measurement using Kalman filter for accuracy of three meter. Designing the 

tracking controller for train which is constrained to move in predefined direction and velocity Simulation is carried out using Mat 

Lab and Visual Kalman filter window. The initial track observed for 60 samples along horizontal and vertical direction with data 

loss of only 0.0005% inaccuracy. 
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 I. Introduction   

The railway is one of the biggest transportation systems in the world. For the efficient and safe transportation, 

modernized physical layout and advanced communication infrastructure are essential to support the transportation. 

Tracking, location reporting, speed, time synchronization, signaling and controlling etc. are the key factors of an 

intelligent rail operation management. The communication systems play a major challenging role in the biggest rail 

transportation system. [1][2]. For the last few decades, many researchers have done lot of work on train tracking, 

with measurement of speed and velocity in satellite visible environment using Space based radio navigation system 

called Global Positioning system (GPS). It is one of the advanced technologies which is widely used for tracking, 

positioning, surveying and navigation. It is of more accurate, precise, efficient, low cost and less maintenance 

demand [3]. 

            However many came to the conclusion that GPS technology is not suitable for low satellite visible 

environment such as forest, urban canyons, tunnel, mountains, deep cuttings etc. The Line Of Sight (LOS) between 

transmitter and receiver and multipath loss in such areas results in lesser accuracy in real time application [4]. The 

use of Differential Global Positioning System (DGPS) is to identify specific location of the train which improves the 

accuracy to higher level. DGPS operated with both roving receivers which calculate satellite position and stationary 

receivers that use these measured position to compute signal timing [5].   

          .Differential GPS use multiple receivers to increase measurement accuracy. The mobile receivers calculate 

their absolute positions with increased accuracy by altering their received satellite measurements in co-ordination 

with base station. Nowadays Kalman filters have been widely used in DGPS receivers. The Kalman filter is an 

optimal estimator which is used for real time dynamic data processing [6]. Recent advances in Wireless Sensor 

Network (WSN) with GPS technology are considered in [7]. Author in [7] explains in detail how the accuracy of 

GPS navigation and tracking system detoration due to line of sight and multipath losses. To overcome this, in [7] a 

conventional statistical test method and differential outlier detection method is proposed. In [8] WSN tracking 

control system is proposed where a fuzzy observer-based tracking control is designed for time delay non-linear 

distributed parameter system. Author [8] highlighted range and range-rate measurement for multi target tracking 

with uncollected information. The main drawback of above system is that is not suitable for tracking, signaling and 

controlling the train in satellite visible and low satellite visible area more accurately. To overcome this drawback, 

this research work proposes Kinematics Update State Hypotheses Information (KUSHI) model to track the train 

accurately and precisely in satellite visible and non- visible environment 

. 

        The organization of the paper is as follows. Section (2) explains the overview of DGPS measurements and the 

method to analyze the system. Section (3) explains KUSHI model to measure the kinematics of moving train. The 

state modeling assumption is based on the movement of the train with constant and varying kinematic parameters. 

Section (3.1) explains the problem formulation to track the moving train using Kalman filter. It also explains 

tracking state model and measurement. Section (3.2) explains the algorithm to test Kalman filter model theoretically. 

Section (4) explains simulation set up using Mat lab and Visual Kalman filter window along with nominal 
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parameter. Section (5) depicts results and analysis of the moving train’s position and velocity graph with related 

state errors. Section (6) depicts concluding remarks.       

  

2. Overview of Differential GPS measurements 

         DGPS position accuracy is measured up to 2m, by partly removing atmospheric condition and system errors. 

DGPS receiver receives signal from the satellites and correction signals from reference source or base station. The 

measuring accuracy is gradually decreases as the rover moved away from the base station.                                                                                                          

          Trilateration and Triangulation are the two analytical methods used for tracking and navigation application. 

Trilateration use only distance measurement to identify the position of objects where as Triangulation use angles and 

distance to locate an object. The application of these two analytical tracking and navigation method to a dynamic 

system have some disadvantages like distance measurements become very fluctuating and noisy which in turn make 

localization becomes more difficult. This requires a  suitable filter to remove the unwanted noise signal for the better 

location accuracy of train. The Kalman filter is the best approach that provides optimal estimation of the system 

state vector that is mainly applied to the navigation application like DGPS receiver position and velocity 

determination.  

Kalman Detection / Estimation Technique Kalman filter is linear estimator. It automatically detects the presence 

of moving objects and estimates the kinematics such as position, velocity and acceleration with desired degree of 

accuracy. It provides an efficient methodology to estimate the state of process, it supports estimation of past, present 

and future states [….k-2, k-1, k, k+1, k+2…] 

 3. Proposed Kinematics Update State Hypotheses Information (KUSHI) Model 

 

   Figure (1) applied for real time dynamic data processing system. Estimation using Kalman filter depends on prior 

knowledge of train location using both process and measurement model. 

                                                             

                                                    
 

 

                                                                   Fig1: KUSHI Model 

3.1 Problem formulation to track the moving train using Kalman filter  

        In this work, the problem formulation is concentrated on the train which is constrained to move in straight line 

with constant velocity. Let x ( i ) and x’ ( i ) are the train position and velocity respectively. Let v ( i ) be the 

measurement noise which observe the position of train. The train is moving with constant speed x’’ ( i ) = 0.The 

system states are position, velocity and acceleration. 

 The state parameters are [X,Y,Z] where X= Position, Y= Velocity, Z= Acceleration 

        Tracking State Model 
X (i+1) = A X (i) + B u (i)…………..(1)  Where  A = system transition matrix 

             B= process noise gain matrix 

                      is a sampling interval  
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      X (i+1) = A X (i) + B u (i) 

         = + B  

  

If the time interval is from i to i-1, then the tracking state model equation becomes 

 X (i) = A X (i-1) + B u (i-1)…………..(2) 

 A and B matrices remains same. 

 Where   E {u (i) }= 0 and  Variance{u (i) } = M, 

 Where M = Target model noise co-variance matrix. 

       Measurement Model 

  Y(i)  =  C X (i) + V (i)………………….(3)     Where C is sensor output 

              C=             If =0     C =   

 

  E {v (i) }= 0,  Variance{v (i) } = N    Where N is Measurement noise co-variance matrix 

 

        Prediction updates 

               Filter predicts the state and variance at time i+1 based on information at time i. This is also known as time 

updates. The equations are responsible for projecting forward the current state and error covariance estimates to 

obtain the priori estimates for the next time step. 

1. State Prediction: ( )=A  ) 

2. Prediction Covariance: ( )  = A ( ) A
T 

+ M (i)  

 

     Measurement updates 

                Kalman filter updates the state and variance using combination of the predicted state and the observation 

Y (i+1). These equations are responsible for the feedback which incorporates new measurement in to priori estimate 

to obtain an improved   posteriori estimate.  

1. State estimate :   ( ) = ( ) + K [Yi -C ] 

2. Estimation Co-Variance:   ( )  =  [I-KC] ( ) 

          Gain matrix 

    To minimize the conditional mean-squared estimation error with respect to the Kalman gain. 

  Kalman gain: K =   ( ) C
T 

[ C ( )  C
T 

+ N]
-1 

 Kalman filter model tested theoretically by assuming the parameters; 

   Equation (1) and (3) are tested theoretically by assuming the values of  

      1. Constant Model with A= 1 

      2. Control Variables are set to B, U = 0 

      3. The measurement matrix C=1       

      4. The process is Scalar with N= n , P= p and M= m. Assumes Gaussian  White noise. 

      With these values, the following algorithm (1) is tested to verify the modeling accuracy. 

   3.2 Algorithm (1)  

   State Prediction: ( )=A  ) 

     Prediction Covariance: ( )  = A ( ) A
T 

+ M (i) 

      State Estimate :   ( ) = ( ) + K [Yi -C ] 
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      Estimation Co-Variance:   ( )  =  [I-KC] ( ) 

             Kalman gain: K =   ( ) C
T 

[ C ( )  C
T 

+ N]
-1

     

Where the initial values are, System Noise M = 0.0001, Measurement Noise N = 0.1,X0=0 and                                             

P0 = 1000   

 

4. Simulation Setup 

             The tracking accuracy is determined by the movement of train in straight line with constant and varying 

velocity. To perform this, algorithm (2) given below is applied. Simulation is carried out using Visual Kalman Filter 

window and Mat Lab. Visual Kalman Filter set up is a filtering design for windows and provides visual method to 

estimate the state of process or removes noise from data. 

Adopted Algorithm (2)  

         Function Value [X prediction, P prediction ] =  Predict ( X,P,A,M)    

                                  X prediction = A* X ;    

                                 P prediction = A*P*A
1
 + M ; 

                  Function Value [Difference, T ] = Dynamic ( X prediction , P prediction , Y,C,N)   

                                     Difference = Y-C* X prediction ;    

                                        T = N+C * P prediction   *C
1
  

     
           Function Value [ X KUSHI, PKUSHI] = Dynamic @ update (X prediction ,P prediction ,Diff, T,C)  

                                       K= P prediction *H
1
*T

1
    

                                    X KUSHI = X prediction +K*Difference   

                                    P KUSHI = P prediction – K*T*K
1
  

         Nominal Parameters used in algorithm 

                  Sensor Location -  S1 – [ 0,0,0 ]  S2 – [ 60,0,0 ] 

                  Positional Measurement error - X direction= 0.0001 m 

                  Sampling interval – 1 sec 

                  Initial track reading - 0.8 

                  Process Noise Covariance = 0.8 * Measurement error covariance 

                  Initial State Estimate Covariance = Position Variance = 0.1 [ X, Y] 

                                                                            Velocity Covariance = 0.0001 [X, Y] 

  5. Results and Analysis 

          (A) Position estimation graph 
                  Figure (2) shows simulation results of position of the train moving in straight line (X direction) and its 

corresponding state error. Simulation is carried out for run of 60 samples. Results demonstrate that estimated state 

will be closer to true position value if the model is create based on the true situation, . When the train along X 

direction then position state error is +0.5 at t=30ms and -1 at t=35ms. It is conclude that the data loss is less, when 

the train tracks along X direction and produce only 0.005 %   inaccuracy.  
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.  

Fig. 2 Train along X position and position state errors 

 

 

Figure (3) shows simulation results of position of the train moving in straight line ( Y- direction) and its 

corresponding state errors. The experiment is carried out in 50 msec for 60 samples. When train is moving in Y-

direction, the estimated position is much closer to true measurements. The state errors  occurred are +0.5 and -0.5 at 

t=3msec and t=40msec.It is conclude that the position state errors occurred when train is moving in Y-direction is 

inverse to that of X-direction state errors and produce only 0.005% inaccuracy. 

 

 

 
Fig 3 Train along Y position and  position state errors 

 

          (B)  Velocity estimation graph 

                  Figure (4) and Figure (5) shows the simulation result of Velocity Estimation measurements when the 

train is moving in straight line. The simulation is carried out using 6 samples. Results demonstrate that estimated 

velocity measurements is getting close to the true velocity value and has less error than measurement noise. There is 

no much variation along X direction but is very noticeable along the Y direction as expected. It is conclude that 

initial velocity jerk at (+1.3) and the corresponding state errors at (-0.5) when the train is moving in X-direction. 

Similarly when the train is moving in Y-direction, initial velocity jerk at (-1.3) and the corresponding state error is 

within 0.05 of the true value, even though the measurements are between 0 and 2.     
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Fig 4 The velocity of train along X position and velocity state errors. 

 

 

 

 
 

Fig 5 The velocity of train along Y position and velocity state errors. 
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 6. Concluding remark 

In this paper, KUSHI design based on Kalman filter theory was elaborated and applied for the DGPS accuracy 

measurements. It has been demonstrated that when a train is moving in a straight line with constant and varying 

velocity, results in data loss of only 0.005% inaccuracy. Simulation is carried out using Mat lab. The overall design 

is part of an ongoing research design and integration of tracking train model. For future research direction, it is 

interesting to explore the integrating DGPS with wireless communication devices in a single model, is possible to 

achieve the autonomous identification of train location from the remote places as and when required. It is 

demonstrate and compare the accuracy of the tracking system with individual technology.  
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